Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity.
نویسندگان
چکیده
Multiple heat shock transcription factors (HSFs) have been discovered in several higher eukaryotes, raising questions about their respective functions in the cellular stress response. Previously, we had demonstrated that the two mouse HSFs (mHSF1 and mHSF2) interacted differently with the HSP70 heat shock element (HSE). To further address the issues of cooperativity and the interaction of multiple HSFs with the HSE, we selected new mHSF1 and mHSF2 DNA-binding sites through protein binding and PCR amplification. The selected sequences, isolated from a random population, were composed primarily of alternating inverted arrays of the pentameric consensus 5'-nGAAn-3', and the nucleotides flanking the core GAA motif were nonrandom. The average number of pentamers selected in each binding site was four to five for mHSF1 and two to three for mHSF2, suggesting differences in the potential for cooperative interactions between adjacent trimers. Our comparison of mHSF1 and mHSF2 binding to selected sequences further substantiated these differences in cooperativity as mHSF1, unlike mHSF2, was able to bind to extended HSE sequences, confirming previous observations on the HSP70 HSE. Certain selected sequences that exhibited preferential binding of mHSF1 or mHSF2 were mutagenized, and these studies demonstrated that the affinity of an HSE for a particular HSF and the extent of HSF interaction could be altered by single base substitutions. The domain of mHSF1 utilized for cooperative interactions was transferable, as chimeric mHSF1/mHSF2 proteins demonstrated that sequences within or adjacent to the mHSF1 DNA-binding domain were responsible. We have demonstrated that HSEs can have a greater affinity for a specific HSF and that in mice, mHSF1 utilizes a higher degree of cooperativity in DNA binding. This suggests two ways in which cells have developed to regulate the activity of closely related transcription factors: developing the ability to fully occupy the target binding site and alteration of the target site to favor interaction with a specific factor.
منابع مشابه
The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6.
Avian cells express three heat shock transcription factor (HSF) genes corresponding to a novel factor, HSF3, and homologs of mouse and human HSF1 and HSF2. Analysis of the biochemical and cell biological properties of these HSFs reveals that HSF3 has properties in common with both HSF1 and HSF2 and yet has features which are distinct from both. HSF3 is constitutively expressed in the erythrobla...
متن کاملHuman heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription.
Two members of the heat shock transcription factor (HSF) family, HSF1 and HSF2, both function as transcriptional activators of heat shock gene expression. However, the inducible DNA-binding activities of these two factors are regulated by distinct pathways. HSF1 is activated by heat shock and other forms of stress, whereas HSF2 is activated during hemin-induced differentiation of human K562 ery...
متن کاملHeterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli.
Organisms respond to circumstances threatening the cellular protein homeostasis by activation of heat-shock transcription factors (HSFs), which play important roles in stress resistance, development, and longevity. Of the four HSFs in vertebrates (HSF1-4), HSF1 is activated by stress, whereas HSF2 lacks intrinsic stress responsiveness. The mechanism by which HSF2 is recruited to stress-inducibl...
متن کاملCrosstalk between HSF1 and HSF2 during the heat shock response in mouse testes.
Heat Shock Factor 1 (HSF1) is the primary transcription factor responsible for the response to cellular stress, while HSF2 becomes activated during development and differentiation, including spermatogenesis. Although both factors are indispensable for proper spermatogenesis, activation of HSF1 by heat shock initiates apoptosis of spermatogenic cells leading to infertility of males. To character...
متن کاملHeterotrimerization of HSF1 and HSF2 provides a transcriptional switch in response to distinct stimuli
Abbreviations: HSF-heat shock factor Hsp-heat shock protein nSB – nuclear stress body Sat III – satellite III 2 Abstract Organisms respond to circumstances threatening the cellular protein homeostasis by activation of heat shock transcription factors (HSFs), which play important roles in stress resistance, development and longevity. Of the four HSFs in vertebrates (HSF1-4), HSF1 is activated by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 14 11 شماره
صفحات -
تاریخ انتشار 1994